作为教育工作者一定要在上台讲课之前认真写好一份教案,教案的制定是为了让我们的教学效果达到最佳,以下是句子范小编精心为您推荐的乘法分配律教案5篇,供大家参考。
乘法分配律教案篇1
教学目标
1、使学生理解乘法分配律的意义、
2、掌握乘法分配律的应用、
3、通过观察、分析、比较,培养学生的分析、推理和概括能力、
教学重点
乘法分配律的意义及应用、
教学难点
乘法分配律的反应用、
教具学具准备
口算卡片、投影仪、
教学步骤
一、铺垫孕伏
1、 口算
(27+73)×8 40×9+40×1 14×(10+2) 10×6+10×4
2、 用简便方法计算、(说明根据什么简算的)
25×63×4
3、 师生比赛,看谁算得又对又快、
20×5+5×80 (1250+125)×8
让学生说明是怎样算的?
二、探究新知
1、导入:
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容、(板书课题:乘法分配律)、
2、教学例6:
(1)出示例6:演示课件“乘法分配律”出示例6 下载
(2)引导学生观察每组的两个算式、
(3)教师提问:从上面的例子你发现了什么规律?
(4)学生明确:每组中的两个算式都可以用等号连接、
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的意义、
(6)反馈练习:按题要求,请你说出一个等式、(投影出示)
(__+__)×__=__+__×
教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘、
其次是等号右边两个加数分别同一个数相乘再把两个积相加、
最后是等号左右两边的两个算式相等、
3、教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变、这叫做乘法分配律、
4、反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?
根据练习学生从而得出: (a+b)×c=a×c+b×c
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便、
5、教学例7:演示课件“乘法分配律”出示例7 下载
(1)出示例7:102×43
启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成一个整十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便、
教师板书:
(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据乘法分配律,可以把原式改写成什么形式?
根据学生的回答教师板书:9×37+9×63
=9×(37+63)
=9×100
=900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和、
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数、
③另外两个不同的因数,是两个能凑成整十、整百、整千的加数、
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便、现在你们会了吗?
三、巩固发展 演示课件“乘法分配律”出示练习 下载
1、 练习十四第1题、
根据运算定律在□里填上适当的数、
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2、在横线上填上适当的数、
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__) ×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写、
3、把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)
(2)(24+8)×8 24×5+24×8
(3)20×(l+15) 0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25) 4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4、选择题:
(1)28×(42+29)与下面的( )相等
①28×42+28×29 ②(28+42)×(28+29) ③28×42×29
(2)与a×8-b×8相等的式于是( )
①(a+b)×8 ②(a-b)×(8+8) ③(a-b)×8
(3)与(10+8+9)×5相等的式子是( )
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5、练习十四第4题,投影出示、
一辆凤凰牌自行车420元,一辆永久牌自行车405元、现在各买三辆、买凤凰车和永久车一共用多少元?
四、课堂小结
今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加、希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便、
五、布置作业
练习十四第3题、
用简便方法计算下面各题、
(80+8)×25 35×37+65×37
32×(200+3) 38×29+38
乘法分配律教案篇2
一、教学内容:乘法分配律教材第36页的例3
二、教学目标:
1、使学生在探索的过程中,能自主发现乘法分配律,并能用字母表示。
2、通过观察、分析、比较,培养学生的分析、推理和概括能力。3、发挥学生主体作用,体验探究学习的快乐。
三、教学重点:指导学生探索乘法的分配律。
四、教学难点:乘法分配律的应用。
五、教学准备:小黑板、口算题、例题、练习题等。
六、教学策略:本节课的学习我主要采取自主探究学习,把问题教学法,合作教学法,情境教学法等结合运用于教学过程中。使学生自主、勇敢地体验尝试和实践活动来进行综合学习。
七、教学过程:
(一)、设疑导入
同学们,上节课我们学习了乘法结合律和乘法交换率。谁来说一说,掌握乘法结合律和乘法交换率有什么作用?
接下来我们做几道口算题,看谁做得又对又快。其他同学快速判断。
(二)、探究发现
1.猜想。
师:同学们算得很快,看看下道题你们能不能很快算出来。
这道题算得怎么不如刚才的快啊?
好,我们来看一下它与前面的题目有什么不同?
这道题含有不同运算符号了,有能口算出来的吗?说说你的想法。
为什么这样算哪?
你是怎么知道的?你知道什么是乘法分配律吗?
你自学能力很强,但对乘法分配律的内涵还不了解,这节课我们就来探究乘法分配律好吗?
2.验证。
师:同学们看两个数的和同一个数相乘,如果可以这样计算的话,那可简便多了。到底能不能这样计算,我们来验证一下。请同学们在练习本上分别算出这两个算式的结果,看看是否相同。
师:说说你有什么发现。说明这两个算式关系是什么?
小结:通过验证,这道题确实可以这样算,那是不是所有的两个数的和同一个数相乘的算式都可以这样计算呢?通过这一个例子能下结论吗?
那怎么办?
好,下面请每个同学再举几个这样的例子,看看是不是所有的两个数的和同一个数相乘都可以这样计算?
师:由于时间关系,老师就写到这里,通过举例我们可以发现,两个数的和同一个数相乘都可以这样计算。有没有举出例子不能这样计算的?
一个例子不能说明问题,我们全班同学举了这么多例子,还有没写的用省略号表示。我们都得到了同样的结论。下面请同学们观察黑板上的几组等式,看看你们得到的结论是什么?
乘法分配律教案篇3
教学内容:人教社教材四年级下册p26页例7
教学目标:
1、通过自主探索及与同伴交流,使学生亲历观察、猜测、验证、归纳、建构乘法分配律的全过程。理解乘法分配律的意义。
2、会应用乘法分配律,使某些运算简便。
3、使学生感受数学与现实生活的联系,在知识的形成过程中,培养学生的观察能力、概括能力和语言表达能力。
教学重点:
让学生积极的动手实践、自主探索及与同伴交流,亲历观察、归纳、猜测、验证、推理等探索发现的全过程,学习科学探究方法。
教学难点:理解和掌握乘法分配律的推导过程。
教学设计思路:
1、通过买衣服的.情境转入乘法分配律。
2、通过观察、分析、比较几组不同的算式,引导学生发现一般规律,然后归纳总结出字母公式,并能用语言表述出来,使学生理解乘法分配律的意义。
3、会用乘法分配律进行简单的计算。
教学过程:
一、创设情境,生成问题
1、生活引入,激发兴趣
今年十月,县里准备举行中小学生田径运动会,我们学校准备派5个同学参加比赛,学校准备为这5位同学选一套运动服装。老师在商店逛来逛去选了几件衣服和几条裤子,请看大屏幕。
出示:两件上衣(价格分别是100元、80元)
两条裤子(价格分别是70元、50元)
2、提出问题,独立思考
出示:(1)一共有几种搭配方法?
(2)选择你自己喜欢的一种方案计算出总价(用多种方法计算)。
二、探索交流,建构规律
1、生选择搭配方案并计算。
2、组内研讨,并出示:
(1)一共有几种搭配方案?
(2)介绍自己的方案,并说一说需要花多少钱?你是怎么算的?
3、汇报交流:
(1)探讨第一种方案。
师:哪一个同学想先来给项老师推荐他的方案?
(预设学生回答:a:要求5套衣服多少钱,就要先求出1套多少钱。即:一套的价钱×套数=总价。列式为:(100 70)×5
b:要求5套衣服多少钱,就要先求出5件上衣的价钱和5条裤子的价钱。即:上衣价钱 裤子价钱=总价.列式为:100×5 70×5)
(2)探讨第二种方案。
(3)探讨第三种方案。
(4)探讨第四种方案。
教师板书:
一套 ×套数 = 5件上衣 5条裤子
(150 100)× 5 = 150×5 100×5
(150 70)× 5 = 150×5 70×5
(100 100)× 5 = 100×5 100×5
(100 70)× 5 = 100×5 70×5
4、生列举例子。
(1)出示:活动要求
a、写出三个这个的算式。
b、交流:你怎么来说明你写的算式左右两边是相等的?
(2)汇报、师板书学生说的等式,并让学生说一说怎样证明算式左右两边是相等的。
5、用字母表示乘法分配律。
问:谁能用一个算式表示全班所有同学的算式?
6、学生归纳概括:乘法分配律的意义。
三、巩固应用,训练提升
1、在□里填上适当的数。
(15 20)×12=□×12 □×12
25×(4 9)=□×4 □×9
8×(10 5)=□×□ □×□
30×24=30×□ 30×□
2、把左右两边相等的算式用线连接起来。
48×12 52×12 15×18 26×18
(15 18)×26 25×40 25×4
25×(40 4) (48 52)×12
14×(45-5) 11×4 25×4
(11×25)×4 14×45-14×5
四、全课小结:今天这节课我们学习了什么内容?还记得我们是怎样学的吗?
乘法分配律教案篇4
教学内容:教科书第68页例5,第69页做一做中的题目和练习十四的第l、2 题。 教学目的:使学生理解并掌握,培养学生的分析推理能力。
教具、学具准备:教师把下面复习中的口算写在卡片上;在一张纸条上面5个白色的正方形和3个红色的正方形,如:□□□□□■■■,共做4条。
教学过程 :
一、复习
教师出示口算卡片,如:(36+64)8,205+502,6010+1010等,计算每一题时,第一个学生回答先算什么,第二个学生回答再算什么,第三个学生回答接下来算什么。
二、新课
1.教学例5。
教师让学生摆正方形,先把5个白色正方形摆成一横排,接着摆3个红色正方形与白色正方形在同一行上,教师同时贴出一张画有正方形的`纸条,先只显示5个白色的正方形,然后再显示3个红色的正方形。接着教师说明要摆4行这样的正方形,边说边贴出另外3张画着正方形的纸条。教师指着图形提问:
图中一共有多少个正方形?你是怎样想的?先请一个学生回答.教师把学生所列的算式写在黑板上。
还有别的算法吗?你是怎样想的?再请一个学生回答,如果这个学生说出另外一种算法,教师再把这个学生所说的算式也写在黑板上。如:
(5+3)4 54+34
教师:第一个算式是先求出每一行有多少个正方形,再求4行一共有多少个正方形。
第二个算式是先求出白正方形和红正方形各有多少个,再求出一共有多少个正方形。这两个算式的计算方法虽然不同,但是都可以求出于共有多少个正方形。下面我们大家一齐来计算,看一看这两个算式的得数怎样。学生口算,教师板书。然后再提问:
这两个算式的计算结果怎样?
这两个算式的计算结果相等,说明这两个算式有什么关系?学生回答后,教师指出:这两个算式的计算结果相等,我们就可以把它们用等号连起来,板书:
(5+3)4=54+34
等号左面的算式是什么意思?(5与3的和乘以4。)
等号右面的算式是什么意思?(5与3先分别乘以4,然后再把两个积相加。)
教师:这两个算式相等,说明了5与3的和乘以4等于5与3先分别乘以4再相加。
教师:下面我们再看两组算式,先看:(18+7)6 186+76
左面的算式是什么意思?(18与7的和乘以6。)
右面的算式是什么意思?(18与7分别乘以6,再把两个积相加)
算一算左面的算式等于什么?(18加7是25,25乘以6是150。)
算一算右面的算式等于什么?(两个积分别是108和42,它们的和等于150)
教师:左右两个算式都等于150,所以这两个算式相等,可以用等号把它连起来,教 师边说边在两个算式中间画一个等号。
这两个算式相等。说明18与7的和乘以6等于什么?说明18与7的和乘以6等于18与7先分别乘以6再相加。)
教师:我们再来看两个算式 20(15+9) 20xx+209
先来计算一下这两个算式各等于多少?
两个算式都等于多少?
这两个算式相等,说明20乘以15与9的和等于什么?
2.进行抽象概括。
教师指着上面的算式提问:
仔细观察上面的三个等式,你看出了什么?先看等号左面的三个算式有什么相同的 地方?多让几个学生说一说。(第一、二两个等式都是两个数的和乘以一个数;第三个等式是一个数乘以两个彩的和。)
教师指出:两个数的和乘以一个数或者一个数乘以两个数的和,我们可以用一句话表示,就是两个数的和与一个数相乘。
再看等号右面的三个算式有什么相同的地方?:学生讨论后,教师指出:都是先求两个乘积,再把两个积加起来。
等号左面与等号右面相等是什么意思?学生发言后,教师概括:上面三个等式等号左面分别与等号右面相等说明,两个数的和与一个数相乘,等于这两个数先分别同这个数相乘,再把两个积加起来。我们把乘法运算的这个规律叫做。同时板书。让学生看教科书第68页下面的方框里的结语,全斑齐读两遍。
教师:如果用a、b、c表示三个数,可以写成下面的形式:
(a+b)c=ac+bc
等号左面(a+b)c表示什么意思?(表示两个数的和同一个数相乘)。
等号右面ac+bc表示什么意思?(表示把两个加数分别同这个数相乘;再把两个积相加。)
三、巩固练习
教师在黑板上写算式:(200十3)27,提问:
1.这个算式中是哪两个数的和乘以哪个数?
根据,这个算式等于哪两个乘积的和?
教师在黑板上再写算式:18527十1527,提问:
这个算式中是哪两个数分别乘以哪一个数?
根据,这个算式等于哪两个数的和乘以哪一个数?
2.做第69页做一做中的题目。
先让学生读题,再想一想每个方框里应该填什么数。
四、作业
练习十四的第1、2题。
乘法分配律教案篇5
教学内容:
乘法分配律是小学四年级学生比较难理解与叙述的定律。如何使学生掌握得更好,记得更牢?我想学生自己获得的知识要比灌输得来的记得更牢。因此我在一开始设计了一个购物的情境,让学生在一个宽松愉悦的环境中,走进生活,开始学习新知。
教学目标:
1、让学生在解决实际问题的过程中发现乘法分配律;通过计算说理,理解乘法分配律。
2、让学生在发现规律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。
3、培养学生联系现实问题主动参与探索、发现和概括规律的学习态度,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功
感,增强学习的兴趣和自信。
教学重、难点:
发现并理解乘法分配律。
教具准备:
多媒体课件一套。
教学过程
一、创设问题情境
谈话:这学期,我们学校鼓号队又增加了新成员,辅导员柳老师正在为他们准备服装呢!(课件出示商店场景)
二、展开探索过程
1、初步感知。
提问:仔细观察,从图中你获得了哪些信息?
学生列式后交流反馈解题思路,并借助图形加深学生对两种解题思路的体会。
提问:猜一猜,这两种方法的计算结果会怎么样?
计算验证:算一算,来证明你的猜想是正确的。
板书等式:(30+25)x4=30x4+25x4
2、类比展开。
(1)出示图形,让学生说说你想到了什么?你能用两种方法求出6套衣服一共要付多少元吗?板书:(30+25)x6=30x6+25x6
(2)除了把长方形看成上衣,梯形看成裤子,把它们看成6套衣服,还可以看成什么?
要求6套课桌椅多少元,你准备怎么解决?
板书:(100+60)x6=100x6+60x6
3、体验感悟。
(1)类似这样的等式还有吗?你能写出第4组吗?
学生举例后,挑3组板书。
(2)提问:这3组算式相等吗?怎么证明?(计算、乘法的意义)
同桌互相检查刚才写的算式是否相等。
(3)交流:介绍你写成功的经验
引导:你是怎么根据左边的算式写出右边的算式的?
4、提示规律。
(1)提问:像这样的等式能写完吗?
(2)用自己喜欢的方式表达所发现的规律,在小组里交流。展示。
板书:(a+b)xc=axc+bxc
(3)板书:乘法分配律
让学生用自己的语言说说这个字母式子表示什么,师小结。
三、巩固内化
1、在□里填上合适的数,在○里填上运算符号。
(42+35)×2=42×□+35×□
27×12+43×12=(27+□)×□
15×26+15×14=□○(□○□)
学生独立填写,指名报答案,全班共同校对。指出后两题是乘法分配律的逆向应用。
出示:72x(30+6)= 齐说答案。
出示:(25—12)x4= 可能等于什么?怎样才能确认?你能联想到什么?小结。
2、横着看,在得数相同的两个算式后面画“√”。
(48+52)×13 48×13+52×13 □
40×5+2×5 5×(40+2) □
75×(19+1) 75×19+75 □
40×50+50×90 40×(50+90) □
27×(16+30) 27×16+30 □
独立完成,小组讨论为什么有的是相同的,有的是不相同的。指名报答案,说说第三组两道算式为什么是相等的?第四组的两道算式为什么不相等?怎样改一下能使它们相等?
出示打“√”的算式,如果让你计算的话,你更愿意计算哪边的式子呢?为什么?小结:有时应用乘法分配律可以使计算简便。
四、总结回顾
通过今天这节课的学习,你有什么收获?
五、布置作业
1、必做题:想想做做第5题。
2、选做题:如果把乘法分配律中“两个数的和”换成“3个数的和”、“4个数的和”或“更多个数的和”,结果还会不会不变?用合适的方试着进行验证。