当前位置:首页 > 范文大全 > 写作素材

初二下数学教案5篇

2024-03-25互联网 写作素材 手机版

教案应该充分考虑学生的先前知识,以便更好地连接新旧知识,教案需要根据学生的反馈进行适时的调整,下面是句子范小编为您分享的初二下数学教案5篇,感谢您的参阅。

初二下数学教案篇1

新课指南

1.知识与技能:(1)在具体情境中了解代数式及代数式的值的含义;(2)掌握整式、同类项及合并同类项法则和去括号法则;(3)培养学生用字母表示数和探索数学规律的能力.

2.过程与方法:经历探索规律并用代数式表示规律的过程,学会列简单的代数式.在具体情境中体会同类项的意义及合并同类项、去括号法则的必要性,总结合并同类项及去括号的法则,并利用它们进行整式的加减运算和解决简单的实际问题.

3.情感态度与价值观:通过对整式加减的学习,深入体会代数式在实际生活中的应用,它为后面学习方程(组)、不等式及函数等知识打下良好的基础,同时,也使我们体会到数学知识的产生来源于实际生产和生活的需求,反之,它又服务于实际生活的方方面面.

4.重点与难点:重点是用含有字母的式子表式规律,理解整式的意义,合并同类项的法则和去括号的法则.难点是探索规律的过程及用代数式表示规律的方法,以及准确识别整式的项、系数等知识.

教材解读精华要义

数学与生活

如图15-1所示,用同样规格的黑、白两色的正方形瓷砖铺长方形地面,在第n个图形中,每一行有块瓷砖,每一列有块瓷砖,共有块瓷砖,其中黑色瓷砖共块,白色瓷砖共块.

思考讨论由图15-1可以看到,当n=1时,一横行有4块瓷砖,一竖列有3块瓷砖;当n=2时,一横行有5块瓷砖,一竖列有4块瓷砖;当n=3时,一横行有6块瓷砖,一竖列有5块瓷砖.综上可以发现:4-1=5-2=6-3=3,3-1=4-2=5-3=2.即:一横行的瓷砖数等于n加上3,一竖列的瓷砖数等于n加上2.所以,在第n个图形中,每一横行共有(n+3)块瓷砖,每一竖列共有(n+2)块瓷砖,共有(n+3)(n+2)块瓷砖,其中白色瓷砖共(n+3-2)(n+2-2)=n(n+1)块,黑色瓷砖共有[(n+3)(n+2)-n(n+1)]块.这就是用字母来表示数,即代数式,你还能举出这样用字母表示数的例子吗?

知识详解

知识点1代数式

用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数.的字母连接起来的式子叫做代数式.单独的一个数或一个字母也是代数式.

例如:5,a,(a+b),ab,a2-2ab+b2等等.

知识点2列代数式时应该注意的问题

(1)数与字母、字母与字母相乘时常省略“×”号或用“·”.

如:-2×a=-2a,3×a×b=3·ab,-2×x2=-2x2.

(2)数字通常写在字母前面.

如:mn×(-5)=-5mn,3×(a+b)=3(a+b).

(3)带分数与字母相乘时要化成假分数.

如:2×ab=ab,切勿错误写成“2ab”.

(4)除法常写成分数的形式.

如:s÷x=.

初二下数学教案篇2

一、教学目的

1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.

2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.

二、重点、难点

1.教学重点:正方形的定义及正方形与平行四边形、矩形、菱形的联系.

2.教学难点:正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.

三、例题的意图分析

本节课安排了三个例题,例1是教材p111的例4,例2与例3都是补充的题目.其中例1与例2是正方形性质的应用,在讲解时,应注意引导学生能正确的运用其性质.例3是正方形判定的应用,它是先判定一个四边形是矩形,再证明一组邻边,从而可以判定这个四边形是正方形.随后可以再做一组判断题,进行练习巩固(参看随堂练习1),为了活跃学生的思维,也可以将判断题改为下列问题让学生思考:

①对角线相等的菱形是正方形吗?为什么?

②对角线互相垂直的矩形是正方形吗?为什么?

③对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?

④能说四条边都相等的四边形是正方形吗?为什么?

⑤说四个角相等的四边形是正方形对吗?

四、课堂引入

1.做一做:用一张长方形的纸片(如图所示)折出一个正方形.

学生在动手做中对正方形产生感性认识,并感知正方形与矩形的关系.问题:什么样的四边形是正方形?

正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.

指出:正方形是在平行四边形这个大前提下定义的,其定义包括了两层意:

(1)有一组邻边相等的平行四边形 (菱形)

(2)有一个角是直角的平行四边形 (矩形)

2.【问题】正方形有什么性质?

由正方形的定义可以得知,正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.

所以,正方形具有矩形的性质,同时又具有菱形的性质.

初二下数学教案篇3

初二数学教案的模板范文

初二数学教案的模板范文

?篇1:初中数学 教学简案模版及教学设计范例】

柯城初中数学组备课简案模板(试行稿)

教学目标:

这一部分主要写本课教学内容的目标,包括知识技能目标(知识内容、技能和方法等)、数学思考目标(参与观察、实验、猜想、证明、综合实践等数学活动、体会数学的基本思想和方法、发展形象思维与抽象思维等)、问题解决目标(综合运用数学知识解决简单的实际问题,增强应用意识,获得分析问题和解决问题的一些基本方法等)、情感态度目标(体验获得成功的乐趣,体会数学的特点,养成学习习惯等),可以参考教参和新课标。

注意:书写目标时应将三维目标融合在一起书写,浙教版教材的教学目标多是知识技能类的,备课时请予以完善。重点:

这一部分主要写本课知识技能方面的重点,可以参考教参。注意:教学的重点是由教学内容决定的,所以教参是主要依据。难点:

这一部分主要写较难达成的知识技能和数学思考的内容,可以参考教参和本班学生学情。

注意:教学的难点由内容和学情共同决定,所以不应一味照搬教参难点。教学过程: 一、学习准备

这一部分可以是新课的引例或问题情境,也可以是引导学生自主学习的思考题,还可以是前一课的复习等内容。

注意:不同基础的班可以有区别,基础弱的班问题情境可以简单些、直接些,基础好的班可以融入更多的数学实际应用性问题。二、课本导学

采用“阅读+思考

问题+归纳”的形式进行。每个例题的学习分为:阅读、思考、练习、归纳四个部分进行。

这一部分主要是新课知识内容的自主阅读和学习,每一节课都要确保留给学生一部分阅读和思考时间,切忌一讲到底。

1.“阅读+思考”环节主要针对新知识的自主学习,尽量采用学生自主学习的形式,如阅读课本、小组讨论、全班交流、归纳提升等。应根据学习内容和学习基础选择恰当的阅读

内容,比如一段引例、一个定理、一个题的解答等等。

3.“问题+归纳”环节重在帮助学生理清自主学习中困难的问题,归纳解题步骤、学习的思想方法、积累学习经验等。

注意:教材中的例题的题目可以不抄写,只要标明页码和题号,例题主要重在设计思考性的问题帮助学生学习。预设学生可能遇到的困难,写出学生难理解、易混淆、易出错、易遗漏等注意点。归纳必要的步骤。揭示例题所蕴含的思想方法。

4.“练习”部分,例题和练习的选择以教材的例、习题为主,可以根据难易程度调整呈现顺序,教材中的习题的题目可以不抄写,只要标明页码和题号,配套习题主要写出学生容易出现的错误情况。

注意:课本上的练习一般要求在课内完成“课内练习”、“做一做”、“作业题a组”三个部分的内容。三、盘点收获

盘点本课的知识内容、数学思想、问题解决方法等。

注意:基础好的班通常让学生自己归纳总结,基础弱的班可以师生共同归纳总结。逐渐引导学生学会用思维导图的形式将知识系统化。四、学习检测

基础好的班级尽量安排简短的3-5分钟当堂检测。检测的习题可以来源于课本作业题等,可以在课堂最后进行。五、作业布置

注意:根据学情,完成作业本及书本作业。对书本习题的使用,尽量遵循:课内完成a组题,课外及复习过程中完成b、c组习题,确保课本习题的完全使用。六、课后反思

这一部分主要记录课后感觉课堂教学中存在的问题、学生课堂生成的问题、某些教学策略的特别效果、教学重点完成的情况、难点突破的效果、学生课后作业反映的问题等。

详见附件1、2、3: 教学设计案例

附件15.1 一元一次方程

柯城教研室

刘芳

?教学目标】

1 进一步认识方程及其解的概念。

2 理解一元一次方程的概念,会根据简单数量关系列一元一次方程。3 体验用尝试、检验解一元一次方程的思想与方法。【教学重点】

一元一次方程的概念和解法贯穿整章,因此“一元一次方程的概念”与“尝试检验法”求解是本节教学的重点。【教学难点】

用尝试、检验的方法解一元一次方程的过程比较复杂,是本节教学的难点。【学习准备】

1.下面哪些式子是方程?

(1)3?(?2)?1;(2)x?3?1;(3)3x?5;(4)2x?y?4;(5)x?3?1;(6)3x?1?4. 2.方程与等式有什么联系与区别?

方程是解决实际问题的一个重要数学模型,需要我们进一步学习研究。【课本导学】

思考??

阅读并解答课本第114页“合作学习”的三个问题,思考:

1.列方程就是根据问题中的相等关系,写出含有未知数的等式。

(1)原价为50元的衣服,按8折销售,售价是多少元?原价若为x元呢?(2)你能举例说明你对“物体在水下,水深每增加10米,物体承受的压力就增加

(3)张明投进x个,那么“小杰投进的球的个数”可以怎样表示?“3人一共投进 的球数”怎样表示?

你是怎么理解“三人平均每人投进14个球”这句话的?

思考二

观察你所列的方程,这些方程之间有哪些共同的特点? 请思考:

1.你可以从哪些角度对这些方程进行观察呢?说说你的想法。

2.具有“合作学习”中所列方程一样特点的方程叫做一元一次方程,你能说说这

个名称中“元”和“次”的含义吗?

[练习]完成课本第115页课内练习1.

?归纳』

判断一个方程是不是一元一次方程应抓住哪几个关键特点?

思考三

阅读课本第114页倒数3行至第115页正文结束,并思考下面的问题:

1.(1)如果一个数是方程有什么关系?

(2)如果一个数是方程350?应该是多少?

(3)要判断一个数是不是方程3m?2?1?m的解,你会怎么做?

2.对方程

2x?12

?14的解,这个数代入方程的左边计算得到的值与14

x?500的解,这个数代入方程的左边计算得到的值 10

2x?12

?14进行尝试求解时,你认为x必须是整数吗? 3

x可以取21吗?20呢?x可以取10或者比10 还小的值吗?为什么?说说你的想法。

[练习] 完成课本第115页课内练习2.

?归纳』1.检验一个数是不是一元一次方程的解的步骤有哪些?

2.用尝试检验的方法解一元一次方程,你觉得关键的步骤有哪些? 【盘点收获】

?学习检测】

1.下列说法正确的是()

(a)x?1是等式(b)x?1是方程

(c)方程是等式(d)等式是方程

2.下列式子中,属于一元一次方程的是()(a)5x?

(b)a?b?8(c)12?5?7(d)5x?8?2x?9 3

3.设某数为x,根据下列条件列出求该数的方程:

(1)某数加上1,再乘以2,得6.(2)某数与7的和的2倍等于10.(3)某数的5倍比某数小.某校初一年级328名师生乘车外出春游,己有2辆校车可乘坐64人,还需租用44座的客车多少辆?

设还需租用x辆,则可列出方程44x+64=328.(1)写出一个方程,使它的解是2.【作业布置】略 【课后反思】

课堂教学总是在“预设”与“生成”间交融进行,如何根据学情做好充分的预设,又根据课堂生成灵活应变,这既能反映教师的专业素养,又能展示教师的教学功底.反刍本课,笔者认为还有以下几方面值得反思与改进:

1.忽略课堂“火花”——错失追问良机

在交流对方程的共同特征探讨的环节,有一个同学直接说出了“一元一次方程”的名称.【片断实录】

师:讨论好了吧.哪个小组先来说说你们所归纳的特点.生8:这些等式都含有未知数的,用x或y来表示.师(板书):嗯,都含有未知数,这个未知数呢,有的地方是x,有的地方是y.还有呢? 生8:还有黑板上的所有等式都是一元一次方程.师(惊喜):嗯,你都知道了所有的等式都是我们今天接下来要具体研究的一元一次方程,这位同学已经预习了呢.我们看,刚才这位同学归纳了:都含有未知数.那么请同学们看得更仔细一点,未知数在这里具有什么特征呢?

不难看出,笔者在这里没有很好地抓住学生的课堂即时生成资源,用一句“嗯,……,这位同学已经预习了呢.”轻轻带过,仍然拉着学生回到了预设的轨道——“……,请同学们看得更仔细一点,未知数在这里具有什么特征呢?”如果当时直接问她“那么请你讲讲??

?篇2:初中数学教案的编写模板】

初中数学教案的编写模板。xx 初中教师专用教案 2009-2010 学年度第一学期 课题: 授课教师: 学 目习标 班级: 课时:重点确定 难点确定 教学工具 教 学 过 程 教学方法

随堂练习: 体会与交流 1、数学知识: 2、数学思想方 法: 布置作业: 板 书 设 计教 学 反思

?篇3:初中数学教学设计模板】

学校初中数学教学设计模板 :河北省秦皇岛市卢龙

县木井乡中学

初二下数学教案篇4

教学目标

1、知识与技能

了解因式分解的意义,以及它与整式乘法的关系。

2、过程与方法

经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用。

3、情感、态度与价值观

在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值。

重、难点与关键

1、重点:了解因式分解的意义,感受其作用。

2、难点:整式乘法与因式分解之间的关系。

3、关键:通过分解因数引入到分解因式,并进行类比,加深理解。

教学方法

采用“激趣导学”的教学方法。

教学过程

一、创设情境,激趣导入

?问题牵引】

请同学们探究下面的2个问题:

问题1:720能被哪些数整除?谈谈你的想法。

问题2:当a=102,b=98时,求a2—b2的值。

二、丰富联想,展示思维

探索:你会做下面的填空吗?

1、ma+mb+mc=()();

2、x2—4=()();

3、x2—2xy+y2=()2。

?师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式。

三、小组活动,共同探究

?问题牵引】

(1)下列各式从左到右的变形是否为因式分解:

①(x+1)(x—1)=x2—1;

②a2—1+b2=(a+1)(a—1)+b2;

③7x—7=7(x—1)。

(2)在下列括号里,填上适当的项,使等式成立。

①9x2(______)+y2=(3x+y)(_______);

②x2—4xy+(_______)=(x—_______)2。

四、随堂练习,巩固深化

课本练习。

?探研时空】计算:993—99能被100整除吗?

五、课堂总结,发展潜能

由学生自己进行小结,教师提出如下纲目:

1、什么叫因式分解?

2、因式分解与整式运算有何区别?

六、布置作业,专题突破

选用补充作业。

板书设计

初二下数学教案篇5

一、教学目标

1.了解推理、证明的格式,理解判定定理的证法.

2.掌握平行线的第二个判定定理,会用判定公理及定理进行简单的推理论证.

3.通过第二个判定定理的推导,培养学生分析问题、进行推理的能力.

4.使学生了解知识来源于实践,又服务于实践,只有学好文化知识,才有解决实际问题的本领,从而对学生进行学习目的的教育.

二、学法引导

1.教师教法:启发式引导发现法.

2.学生学法:积极参与、主动发现、发展思维.

三、重点难点及解决办法

(一)重点

判定定理的推导和例题的解答.

(二)难点

使用符号语言进行推理.

(三)解决办法

1.通过教师正确引导,学生积极思维,发现定理,解决重点.

2.通过教师指导,学生自行完成推理过程,解决难点及疑点.

四、课时安排

1课时

五、教具学具准备

三角板、投影仪、自制胶片.

六、师生互动活动设计

1.通过设计练习,复习基础,创造情境,引入新课.

2.通过教师指导,学生探索新知,练习巩固,完成新授.

3.通过学生自己总结完成小结.

七、教学步骤

(一)明确目标

掌握平行线的第二个定理的推理,并能运用其进行简单的证明,培养学生的逻辑思维能力.

(二)整体感知

以情境创设,设计悬念,引出课题,以引导学生的思维,发现新知,以变式训练巩固新知.

(三)教学过程

创设情境,复习引入

师:上节课我们学习了平行线的判定公理和一种判定方法,根据所学看下面的问题(出示投影).

学生活动:学生口答第1、2题.

师:你能说出有什么条件,就可以判定两条直线平行呢?

学生活动:由第l、2题,学生思考分析,只要有同位角相等或内错角相等,就可以判定两条直线平行.

教师将第3题图形画在黑板上.

学生活动:学生口答理由,同角的补角相等.

师:要求学生写出符号推理过程,并板书.

【教法说明】

本节课是前一节课的继续,是在前一节课的基础上进行学习的,所以通过第1、2两题复习上节课所学平行线判定的两个方法,使学生明确,只要有同位角相等或内错角相等,就可以判定两条直线平行.第3题是为推导本节到定定理做铺垫,即如果同旁内角互补,则可以推出同位角相等,也可以推出内错角相等,为定理的推理论证,分散了难点.

师:第4题是一个实际问题,题目中已知的两个角是什么位置关系角?

学生活动:同分内角。

师:它们有什么关系。

学生活动:互补。

师:这个问题就是知道同分内角互补了,那么两条直线是不是平行的呢?这就是这节课我们要研究的问题。