当前位置:首页 > 范文大全 > 写作素材

函数的概念说课教案8篇

2024-04-03互联网 写作素材 手机版

在我们日常的教学生涯中,难免会遇到要写教案的情况,教案是需要结合实际的教学进度和内容的,下面是句子范小编为您分享的函数的概念说课教案8篇,感谢您的参阅。

函数的概念说课教案篇1

教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想.

教学目的:

(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

(4)能够正确使用“区间”的符号表示某些函数的定义域;

教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;

教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

教学过程:

一、引入课题

1、复习初中所学函数的概念,强调函数的模型化思想;

2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

备用实例:

我国xxxx年4月份非典疫情统计:

日期222324252627282930

新增确诊病例数1061058910311312698152101

3、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

4、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

二、新课教学

(一)函数的有关概念

1.函数的概念:

设a、b是非空的数集,如果按照某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有唯一确定的数f(x)和它对应,那么就称f:a→b为从集合a到集合b的一个函数(function).

记作:y=f(x),x∈a.

其中,x叫做自变量,x的取值范围a叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈a}叫做函数的值域(range).

注意:

○1“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

○2函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

2.构成函数的三要素:

定义域、对应关系和值域

3.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间;

(2)无穷区间;

(3)区间的数轴表示.

4.一次函数、二次函数、反比例函数的定义域和值域讨论

(由学生完成,师生共同分析讲评)

(二)典型例题

1.求函数定义域

课本p20例1

解:(略)

说明:

○1函数的定义域通常由问题的实际背景确定,如果课前三个实例;

○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;

○3函数的定义域、值域要写成集合或区间的形式.

巩固练习:课本p22第1题

2.判断两个函数是否为同一函数

课本p21例2

解:(略)

说明:

○1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

○2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

巩固练习:

○1课本p22第2题

○2判断下列函数f(x)与g(x)是否表示同一个函数,说明理由?

(1)f(x)=(x-1)0;g(x)=1

(2)f(x)=x;g(x)=

(3)f(x)=x2;f(x)=(x+1)2

(4)f(x)=|x|;g(x)=

(三)课堂练习

求下列函数的定义域

(1)

(2)

(3)

(4)

(5)

(6)

三、归纳小结,强化思想

从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。

四、作业布置

课本p28习题1.2(a组)第1—7题(b组)第1题

函数的概念说课教案篇2

一、教材分析

1、 教材的地位和作用:

函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。

2、 教学目标及确立的依据:

教学目标:

(1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

(2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。

(3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

教学目标确立的依据:

函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学好其他的内容。而掌握好函数的概念是学好函数的基石。

3、教学重点难点及确立的依据:

教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

教学难点:映射的概念,函数近代概念,及函数符号的理解。

重点难点确立的依据:

映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

二、教材的处理:

将映射的定义及类比手法的运用作为本课突破难点的关键。 函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。

三、教学方法和学法

教学方法:讲授为主,自主预习为辅。

依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为能学好后面的知识打下坚实的基础。

学法:四、教学程序

一、课程导入

通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?

二. 新课讲授:

(1) 接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:a→b,及原像和像的定义。强调指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的对应法则 f。进一步引导判断一个从a到b的对应是否为映射的关键是看a中的任意一个元素通过对应法则f在b中是否有唯一确定的元素与之对应。

(2)巩固练习课本52页第八题。

此练习能让更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

例1. 给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导发现它们是特殊的映射进而给出函数的近代定义(设a、b是两个非空集合,如果按照某种对应法则f,使得a中的任何一个元素在集合b中都有唯一的元素与之对应则这样的对应叫做集合a到集合b的映射,它包括非空集合a和b以及从a到b的对应法则f),并说明把函f:a→b记为y=f(x),其中自变量x的取值范围a叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{ f(x):x∈a}叫做函数的值域。

并把函数的近代定义与映射定义比较使认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。

再以让判断的方式给出以下关于函数近代定义的注意事项:2. 函数是非空数集到非空数集的映射。

3. f表示对应关系,在不同的函数中f的具体含义不一样。

4. f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

5. 集合a中的数的任意性,集合b中数的唯一性。

66. “f:a→b”表示一个函数有三要素:法则f(是核心),定义域a(要优先),值域c(上函数值的集合且c∈b)。

三.讲解例题

例1.问y=1(x∈a)是不是函数?

解:y=1可以化为y=0*x+1

画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。

[注]:引导从集合,映射的观点认识函数的定义。

四.课时小结:

1. 映射的定义。

2. 函数的近代定义。

3. 函数的三要素及符号的正确理解和应用。

4. 函数近代定义的五大注意点。

五.课后作业及板书设计

书本p51 习题2.1的1、2写在书上3、4、5上交。

预习函数三要素的定义域,并能求简单函数的定义域。

函数(一)

一、映射:

2.函数近代定义: 例题练习

二、函数的定义 [注]1—5

1.函数传统定义

三、作业:

函数的概念说课教案篇3

一、教材分析及处理

函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。

对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。

教学重点是函数的概念,难点是对函数概念的本质的理解。

学生现状

学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。

二、教学三维目标分析

1、知识与技能(重点和难点)

(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。

(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。

(3)、掌握定义域的表示法,如区间形式等。

(4)、了解映射的概念。

2、过程与方法

函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:

(1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。

(2)、面向全体学生,根据课本大纲要求授课。

(3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。

3、情感态度与价值观

(1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案《《函数》教学设计》。

(2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。

三、教学器材

多媒体ppt课件

四、教学过程

教学内容教师活动学生活动设计意图

?函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活

知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫

思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接

新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题

对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识

函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法

注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点

习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系

映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫

小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点

五、教学评价

为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。

在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。

虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。

函数的概念说课教案篇4

教学目标:

1、进一步理解的概念,能从简单的实际事例中,抽象出关系,列出解析式;

2、使学生分清常量与变量,并能确定自变量的取值范围.

3、会求值,并体会自变量与值间的对应关系.

4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的的自变量的取值范围的求法.

5、通过的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.

教学重点:了解的意义,会求自变量的取值范围及求值.

教学难点:概念的抽象性.

教学过程:

(一)引入新课:

上一节课我们讲了的概念:一般地,设在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的.

生活中有很多实例反映了关系,你能举出一个,并指出式中的自变量与吗?

1、学校计划组织一次春游,学生每人交30元,求总金额y(元)与学生数n(个)的关系.

2、为迎接新年,班委会计划购买100元的小礼物送给同学,求所能购买的总数n(个)与单价(a)元的关系.

解:1、y=30n

y是,n是自变量

2、 ,n是,a是自变量.

(二)讲授新课

刚才所举例子中的,都是利用数学式子即解析式表示的.这种用数学式子表示时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.

例1、求下列中自变量x的取值范围.

(1) (2)

(3) (4)

(5) (6)

分析:在(1)、(2)中,x取任意实数, 与 都有意义.

(3)小题的 是一个分式,分式成立的条件是分母不为0.这道题的分母是 ,因此要求 .

同理(4)小题的 也是分式,分式成立的条件是分母不为0,这道题的分母是 ,因此要求 且 .

第(5)小题, 是二次根式,二次根式成立的条件是被开方数大于、等于零. 的被开方数是 .

同理,第(6)小题 也是二次根式, 是被开方数,

.

解:(1)全体实数

(2)全体实数

(3)

(4) 且

(5)

(6)

小结:从上面的例题中可以看出的解析式是整数时,自变量可取全体实数;的解析式是分式时,自变量的取值应使分母不为零;的解析式是二次根式时,自变量的取值应使被开方数大于、等于零.

注意:有些同学没有真正理解解析式是分式时,自变量的取值应使分母不为零,片面地认为,凡是分母,只要 即可.教师可将解题步骤设计得细致一些.先提问本题的分母是什么?然后再要求分式的分母不为零.求出使成立的自变量的取值范围.二次根式的问题也与次类似.

但象第(4)小题,有些同学会犯这样的错误,将答案写成 或 .在解一元二次方程时,方程的两根用“或者”联接,在这里就直接拿过来用.限于初中学生的接受能力,教师可联系日常生活讲清“且”与“或”.说明这里 与 是并且的关系.即2与-1这两个值x都不能取.

函数的概念说课教案篇5

教学目标:

1.通过现实生活中丰富的实例,让学生了解函数概念产生的背景,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数的概念,掌握函数是特殊的数集之间的对应;

2.了解构成函数的要素,理解函数的定义域、值域的定义,会求一些简单函数的定义域和值域;

3.通过教学,逐步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.

教学重点:

两集合间用对应来描述函数的概念;求基本函数的定义域和值域.

教学过程:

一、问题情境

1.情境.

正方形的边长为a,则正方形的周长为 ,面积为 .

2.问题.

在初中,我们曾认识利用函数来描述两个变量之间的关系,如何定义函数?常见的函数模型有哪些?

二、学生活动

1.复述初中所学函数的概念;

2.阅读课本23页的问题(1)、(2)、(3),并分别说出对其理解;

3.举出生活中的实例,进一步说明函数的对应本质.

三、数学建构

1.用集合的语言分别阐述23页的问题(1)、(2)、(3);

问题1 某城市在某一天24小时内的气温变化情况如下图所示,试根据函数图象回答下列问题:

(1)这一变化过程中,有哪几个变量?

(2)这几个变量的范围分别是多少?

问题2 略.

问题3 略(详见23页).

2.函数:一般地,设a、b是两个非空的数集,如果按某种对应法则f,对于集合a中的每一个元素x,在集合b中都有惟一的元素和它对应,这样的对应叫做从a到b的一个函数,通常记为=f(x),x∈a.其中,所有输入值x组成的集合a叫做函数=f(x)的定义域.

(1)函数作为一种数学模型,主要用于刻画两个变量之间的关系;

(2)函数的本质是一种对应;

(3)对应法则f可以是一个数学表达式,也可是一个图形或是一个表格

(4)对应是建立在a、b两个非空的数集之间.可以是有限集,当然也就可以是单元集,如f(x)=2x,(x=0).

3.函数=f(x)的定义域:

(1)每一个函数都有它的定义域,定义域是函数的生命线;

(2)给定函数时要指明函数的定义域,对于用解析式表示的集合,如果没

有指明定义域,那么就认为定义域为一切实数.

四、数学运用

例1.判断下列对应是否为集合a 到 b的函数:

(1)a={1,2,3,4,5},b={2,4,6,8,10},f:x→2x;

(2)a={1,2,3,4,5},b={0,2,4,6,8},f:x→2x;

(3)a={1,2,3,4,5},b=n,f:x→2x.

练习:判断下列对应是否为函数:

(1)x→2x,x≠0,x∈r;

(2)x→,这里2=x,x∈n,∈r。

例2 求下列函数的定义域:

(1)f(x)=x—1;(2)g(x)=x+1+1x。

例3 下列各组函数中,是否表示同一函数?为什么?

a.=x与=(x)2; b.=x2与=3x3;

c.=2x-1(x∈r)与=2t-1(t∈r); d.=x+2x-2与=x2-4

练习:课本26页练习1~4,6.

五、回顾小结

1.生活中两个相关变量的刻画→函数→对应(a→b)

2.函数的对应本质;

3.函数的对应法则和定义域.

六、作业:

课堂作业:课本31页习题2。1(1)第1,2两题.

函数的概念说课教案篇6

学习目标:

(1)理解函数的概念

(2)会用集合与对应语言来刻画函数,

(3)了解构成函数的要素。

重点:

函数概念的理解

难点:

函数符号y=f(x)的理解

知识梳理:

自学课本p29—p31,填充以下空格。

1、设集合a是一个非空的实数集,对于a内 ,按照确定的对应法则f,都有 与它对应,则这种对应关系叫做集合a上的一个函数,记作 。

2、对函数 ,其中x叫做 ,x的取值范围(数集a)叫做这个函数的. ,所有函数值的集合 叫做这个函数的 ,函数y=f(x) 也经常写为 。

3、因为函数的值域被 完全确定,所以确定一个函数只需要

?

4、依函数定义,要检验两个给定的变量之间是否存在函数关系,只要检验:

① ;② 。

5、设a, b是两个实数,且a

(1)满足不等式 的实数x的集合叫做闭区间,记作 。

(2)满足不等式a

(3)满足不等式 或 的实数x的集合叫做半开半闭区间,分别表示为 ;

分别满足x≥a,x>a,x≤a,x

其中实数a, b表示区间的两端点。

完成课本p33,练习a 1、2;练习b 1、2、3。

例题解析

题型一:函数的概念

例1:下图中可表示函数y=f(x)的图像的只可能是( )

练习:设m={x| },n={y| },给出下列四个图像,其中能表示从集合m到集合n的函数关系的有____个。

题型二:相同函数的判断问题

例2:已知下列四组函数:① 与y=1 ② 与y=x ③ 与

④ 与 其中表示同一函数的是( )

a. ② ③ b. ② ④ c. ① ④ d. ④

练习:已知下列四组函数,表示同一函数的是( )

a. 和 b. 和

c. 和 d. 和

题型三:函数的定义域和值域问题

例3:求函数f(x)= 的定义域

练习:课本p33练习a组 4.

例4:求函数 , ,在0,1,2处的函数值和值域。

当堂检测

1、下列各组函数中,表示同一个函数的是( a )

a、 b、

c、 d、

2、已知函数 满足f(1)=f(2)=0,则f(-1)的值是( c )

a、5 b、-5 c、6 d、-6

3、给出下列四个命题:

① 函数就是两个数集之间的对应关系;

② 若函数的定义域只含有一个元素,则值域也只含有一个元素;

③ 因为 的函数值不随 的变化而变化,所以 不是函数;

④ 定义域和对应关系确定后,函数的值域也就确定了.

其中正确的有( b )

a. 1 个 b. 2 个 c. 3个 d. 4 个

4、下列函数完全相同的是 ( d )

a. , b. ,

c. , d. ,

5、在下列四个图形中,不能表示函数的图象的是 ( b )

6、设 ,则 等于 ( d )

a. b. c. 1 d.0

7、已知函数 ,求 的值.( )

函数的概念说课教案篇7

教材:已知三角函数值求角(反正弦,反余弦函数)

目的:要求学生初步(了解)理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出 范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。

过程:

一、简单理解反正弦,反余弦函数的意义。

1在r上无反函数。

2在 上, x与y是一一对应的,且区间 比较简单

在 上, 的反函数称作反正弦函数,

记作 ,(奇函数)。

同理,由

在 上, 的反函数称作反余弦函数,

记作

二、已知三角函数求角

首先应弄清:已知角求三角函数值是单值的。

已知三角函数值求角是多值的。

例一、1、已知 ,求x

解: 在 上正弦函数是单调递增的,且符合条件的角只有一个

(即 )

2、已知

解: , 是第一或第二象限角。

即( )。

3、已知

解: x是第三或第四象限角。

(即 或 )

这里用到 是奇函数。

例二、1、已知 ,求

解:在 上余弦函数 是单调递减的,

且符合条件的角只有一个

2、已知 ,且 ,求x的值。

解: , x是第二或第三象限角。

3、已知 ,求x的值。

解:由上题: 。

介绍:∵

上题

例三、(见课本p74-p75)略。

三、小结:求角的多值性

法则:1、先决定角的象限。

2、如果函数值是正值,则先求出对应的锐角x;

如果函数值是负值,则先求出与其绝对值对应的锐角x,

3、由诱导公式,求出符合条件的其它象限的角。

四、作业:

p76-77 练习 3

习题4.11 1,2,3,4中有关部分。

函数的概念说课教案篇8

?教材分析】

利用编辑公式对工作表中的数据进行计算、处理和分析,是吉林教育出版社出版的《初中信息技术》一年级下册中《第六章 数字奥运 尽显风采》

第二节内容。该教材对利用公式进行数据计算处理(进行公式创建、编辑、复制和自动填充)的教学内容只是安排了对“中国获得夏季奥运会奖牌统计表(1984-2004)”计算的一个简单的例子。其内容安排单一、简单,很难应对现实生活中所面对的对数据进行加、减、乘、除计算。为此,在教学过程中增设了与学生生活实际相关的系列内容(以成就英雄为主题,分别设计了:初学咋练、小有所成、名声大振、声名显赫、成就英雄五个任务组合)进行教学,有意扩充了学生的知识面,提高了学生的对数据的处理能力。

?学情分析】

学习本节课之前,学生们学习了excel简单的数据录入等操作,在本课教学中,教师认真结合学生学情,将教学内容设计成“竞赛”“闯关”形式,增强教学趣味性,以激发学生的学习兴趣与热情,并通过演示、指导、学生自主探究和合作学习等形式,让学生逐步掌握本节教学内容。

?教学目标】

掌握excel公式的概念,输入方法以及公式的自动填充的应用、掌握excel中创建公式的格式; 学会利用excel中的公式计算功能,完成生活中有关数据的计算,能根据具体问题灵活应用公式进行计算; 培养学生互帮互助良好品质、培养学生对现实问题的思考,培养学生学会融于集体,合作学习的态度。

?教学重点】

掌握excel中公式的定义、公式的输入、公式的编辑等操作。

?教学难点】

公式的创建、公式的格式

?教法学法】任务驱动法 主动探究法 讲解法,演示法,小组合作

?教学准备】计算机教室、任务素材、大屏幕投影

?课时】1课时

?课型】新授课

?教学过程】

一、激发兴趣、导入新课(2分钟)

师:在现实生活中,我们经常遇到对数据进行计算处理的问题,比如学生成绩统计、文艺汇演的成绩、文明班级评选结果统计、奥运会的奖牌统计等等。通常我们都是怎样来计算处理的呢?

生:踊跃,积极发言,表达自己的解决方法

师:大屏幕展示任务素材 m.shubaoc.com/ 中“中国获得夏季奥运会奖牌统计表(1984——2004)”表格,请同学们用刚才说过的这些方法来计算一下我国的奖牌总数,限时三十秒,看哪位同学算出的最多。

根据学生完成情况,得出结论:由此可以看出用传统的方法来计算是非常麻烦的,那么在excel中会不会有更好的方法呢?excel是一款用于数据统计和分析的应用软件,实现统计与分析的途径主要是计算,这节课我们就一起来研究一下在excel中如何利用公式对数据进行分析计算。现在我们就开始学习excel中公式的输入。

二、讲授新课、合作探究

(一)两个知识点的理解(教师讲解3分钟,其中知识点一利用1分钟简单阐述,知识点二2分钟详细说明)

1、公式:(简单阐述)

公式是以对工作表数值进行加法、减法和乘法等运算,公式由运算符、常量、单元格引用值、名称及工作表函数等元素组成。

运算符用来对公式中的各元素进行运算操作。excel包含四种类型的运算符:算术运算符、比较运算符、文本运算符和引用运算符。

其中,算术运算符是我们用得比较多的,它用来完成基本的数学运算,算术运算符为:

2、excel中输入公式的操作(详细说明)

输入公式的步骤:

选定单元格→键入=(等号)→输入公式(如果公式中要引用某单元格的数据,既可用鼠标点击该单元格,也可用手动方法键入该单元格)→按回车键自动进行计算并显示结果。

特别强调:公式都是以等号开头,等号后是由操作数和数学运算符号组成的一个表达式。

(二)自主探究 合作学习(20分钟,其中基础任务利用5分钟师生详细完成,任务二到任务五,学生根据自己的情况分配15分钟)

教师通过网络,下发本课任务素材,然后让学生打开任务素材中“初学咋练”工作表,尝试根据教师的讲解,完成里面的任务一。

基础任务:完成任务素材中“初学咋练”工作表中任务一。认真观察 “中国获得夏季奥运会奖牌统计表(1984——2004)”表,尝试完成1984年中国获得的奖牌总数,总结归纳操作步骤。

1.学生总结归纳在excel中计算我国奥运会奖牌总数的步骤。(学生先自主学习,尝试计算,然后总结步骤,教师根据学生总结,整理完善)

(1)选定需存放奖牌总数的单元格(任务中指定一个单元格)

(2)输入公式

(3)回车确定

启发学生思考:

在一个单元格中输入公式后,若相邻的单元格中需要进行同类型计算,则可利用公式的自动填充功能来实现。

方法如下:(教师演示,操作方法)

(1)选择公式所在的单元格,移动鼠标到单元格的右下角(填充柄)处

(2)当鼠标指针变为黑十字状时,按住鼠标左键,拖动填充柄经过目标区域

(3)到达目标区域后,放开鼠标左键,自动填充完毕。

学生根据教师演示讲解,完成“初学咋练”工作表中任务二。利用自动填充复制公式计算出其他届我国的奖牌总数。

(设计意图:师生共同完成这个基础任务,总结excel利用公式计算的方法和公式快速填充方法,通过本个任务的完成,让学生掌握excel公式计算的操作方法,为后面的学习打下坚实的基础)

任务二到任务五,学生通过自主探究或合作学习完成,教师巡视,个别指导。

任务二:完成任务素材中“小有所成”工作表中的任务

(设计意图:这个任务,加大了公式计算难度,涉及带括号混合运算,通过本个任务的完成,让学生更加深入的了解excel公式计算的作用和操作方法,同时培养学生学会关心他人)

任务三:完成任务素材中“名声大振”工作表中的任务。

【高考要求】:三角函数的有关概念(b)。

【教学目标】:理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化。

理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切。

【教学重难点】:终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义。

【知识复习与自学质疑】

一、问题。

1、角的概念是什么?角按旋转方向分为哪几类?

2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?

4、弧度制下圆的弧长公式和扇形的面积公式是什么?

5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?

6、你能在单位圆中画出正弦、余弦和正切线吗?

7、同角三角函数有哪些基本关系式?

二、练习。

1、给出下列命题:

(1)小于的角是锐角;

(2)若是第一象限的角,则必为第一象限的角;

(3)第三象限的角必大于第二象限的角;

(4)第二象限的角是钝角;

(5)相等的角必是终边相同的角;终边相同的角不一定相等;

(6)角2与角的终边不可能相同;

(7)若角与角有相同的终边,则角(的终边必在轴的非负半轴上。其中正确的命题的序号是

2、设p点是角终边上一点,且满足则的值是

3、一个扇形弧aob的面积是1,它的周长为4,则该扇形的中心角=弦ab长=

4、若则角的终边在象限。

5、在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是

6、若是第三象限的角,则-,的终边落在何处?

【交流展示、互动探究与精讲点拨】

(1)求终边落在阴影部分(含边界)的所有角的集合;

(2)求终边落在阴影部分、且在上所有角的集合;

(3)求始边在om位置,终边在on位置的所有角的集合。

例2.(1)已知角的终边在直线上,求的值;

(2)已知角的终边上有一点a,求的值。

例3.若,则在第象限。

例4.若一扇形的周长为20,则当扇形的圆心角等于多少弧度时,这个扇形的面积最大?最大面积是多少?

【矫正反馈】

1、若锐角的终边上一点的坐标为,则角的弧度数为。

2、若,又是第二,第三象限角,则的取值范围是。

3、一个半径为的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是弧度或角度,该扇形的面积是。

4、已知点p在第三象限,则角终边在第象限。

5、设角的终边过点p,则的值为。

6、已知角的终边上一点p且,求和的值。